32 research outputs found

    Transmit antenna selection for multiuser massive mimo

    Get PDF
    In massive multiple input multiple output (MIMO) systems, major challenges are present due to the large number of active antennas and radio frequency (RF) chains,suchasincreasedpowerconsumptionandcomputationcomplexity. Transmitantennaselection(TAS)isbeinginvestigatedasasolutiontotacklethesechallenges. In this thesis, a dynamic transmit antenna selection technique is proposed whichcanmaximizethesumrateofamultiuser(MU)-MIMOcommunicationsystem. In order to satisfy the objective, the number of transmit antennas required is determined by remodeling it as a binary Knapsack Problem (KP) and then extending to a Multiple KP (MKP) for MU-MIMO. Furthermore, an improvement in the decision making is also proposed with the introduction of a ?exible decision criteria, whilst reducing the structure of the MKP to resemble that of a single binary KP. Additionally, comparisons of the KP based algorithms are done with two low complexity techniques, which are the sequential selection algorithm and random selection algorithm. Results show that the KP based techniques outperform these low complexity techniques. The modi?ed binary KP algorithm is also superior to that of the MKP, as it is not sensitive to solving as binary knapsack sub-problems. The proposed technique has good performance for di?erent antenna selection measures and is suitable to ensure communication e?ciency in future wireless communication systems

    Challenges and Opportunities in Wireless Fronthaul

    Get PDF
    To date the evolution from traditional distributed radio access networks (D-RAN) towards fronthaul oriented centralized (C-RAN) architectures has imposed significant challenges for the underlying transport network. The processing and coordination benefits anticipated in C-RAN are generally underpinned with the assumption of a full fiber transport network capable of meeting the demanding performance criteria of fronthaul transport. Recent advances in Ethernet based fronthaul interfaces together with exploration of new mmWave and sub-THz spectrum bands present an opportunity for wireless solutions to also realize these fronthaul transport requirements. In this work, the requirements for promising new Ethernet based fronthaul interfaces are explored. These requirements are assessed against the measured capabilities of a state-of-the-art E-band (71-86 GHz) wireless transport solution. The experimental results are then used to forecast the performance expectations of future higher bandwidth systems operating above 100 GHz. A dimensioning and link budget analysis is performed for the various candidate spectrum bands and fronthaul interfaces to highlight the viability of fronthaul delivered over wireless transport. Finding show that transport solutions operating at mmWave and sub-THz frequencies are able to support the performance requirements of newly standardized fronthaul interface splits and as such present an opportunity to utilize wireless fronthaul transport in C-RAN architectures where fiber cannot otherwise be supported. Furthermore, analysis demonstrates that the hop lengths possible for 5G small cell configurations are well aligned with the expected inter-site distances of future dense urban cell deployments making wireless fronthaul a promising concept for realizing future C-RAN based cell densification

    5G Wireless Communication Network Architecture and Its Key Enabling Technologies

    Get PDF
    The wireless mobile communication systems have developed from the second generation (2G) through to the current fourth generation (4G) wireless system, transforming from simply telephony system to a network transporting rich multimedia contents including video conferencing, 3-D gaming and in-flight broadband connectivity (IFBC) where airline crew use augmented reality headsets to address passengers personally. However, there are still many challenges that are beyond the capabilities of the 4G as the demand for higher data rate, lower latency, and mobility requirement by new wireless applications sores leading to mixed contentcentric communication service. The fifth generation (5G) wireless system has thus been suggested, and research is ongoing for its deployment beyond 2020. In this article, we investigate the various challenges of 4G and propose an indoor, outdoor segregated cellular architecture with cloudbased Radio Access Network (C-RAN) for 5G, we review some of its key emerging wireless technologies needed in meeting the new demands of users including massive multiple input multiple output (mMIMO) system, Device-to-Device (D2D), Visible Light Communication (VLC), Ultra-dense network, Spatial Modulation and Millimeter wave technology. It is also shown how the benefits of the emerging technologies can be optimized using the Software Defined Networks/Network Functions Virtualization (SDN/NFV) as a tool in C-RAN. We conclude that the new 5G wireless architecture will derive its strength from leveraging on the benefits of the emerging hardware technologies been managed by reconfigurable SDN/NFV via the C-RAN. This work will be of immense help to those who will engage in further research expedition and network operators in the search for a smooth evolution of the current state of the art networks toward 5G networks

    Toward Wireless Fronthaul for Cloud RAN Architectures

    No full text
    The application of wireless backhaul is widely adopted in commercial mobile networks as a cost effective alternative to fibre. However, the practical use of wireless transport to support new centralised RAN architectures is not well studied. This paper presents proof of concept results which extend evolving Ethernet based mobile fronthaul concepts to wireless transport solutions. An Open Air Interface (OAI) software base station is utilised where the option 8 fronthaul interface requirements are evaluated and the operational performance assessed over an Ethernet based E-band (71-86GHz) mmWave point to point radio link. Experimental measurements highlight the potential of high capacity wireless transport solutions to meet basic requirements of Ethernet based fronthaul interfaces. Findings also emphasise however, that the anticipated jitter performance requirements of higher configuration massive MIMO radio units (RU) cannot be supported without exploitation of higher layer functional split transport interfaces or new wireless transport spectrum assets such as D-band (130-174.8GHz)
    corecore